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                                                       Abstract 

 
 The P-vector inverse method has been successfully used to invert the absolute velocity from 

hydrographic data for the extraequatorial hemispheres, but not for the equatorial region since it is 

based on the geostrophic balance.  A smooth interpolation scheme across the equator is developed 

in this study to bring together the two already known solutions (P-vectors) for the extraequatorial 

hemispheres. This model contains four major components: (a) the P-vector inverse model to obtain 

the solutions for the two extraequatorial hemispheres, (b) the objective  method  to  determine the 

-values at individual islands,  (c) the Poisson equation-solver to obtain the  Π -values over the 

equatorial region from the volume transport vorticity equation, and (d) the Poisson equation-solver 

to obtain the  and depth-integrated velocity field  (U, V) over the globe from the Poisson 

Ψ

Ψ Ψ -

equation.  The Poisson equation solver is similar to the box model developed by Wunsch. 

Thus, this method combines the strength from both box and P-vector models. The calculated depth-

integrated velocity and -field agree well with earlier studies. Ψ
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                                                       1. Introduction 

Winds, density, and friction determine volume transport in oceans. The wind-driven volume 

transport has been estimated using the Sverdrup (1947) relation for the interior ocean, and using the 

Stommel (1948) and Munk (1950) linear frictional ocean model for the intensive western boundary 

currents. Welander (1959), Evenson and Veronis (1975) and Hellerman and Rosenstein (1983) 

calculated the streamfunction for the world ocean from different wind stress data; Leetmaa and 

Bunker (1978), Meyers (1980), and Godfrey and Golding (1981) calculated similarly for the North 

Atlantic, tropical Pacific,  and Indian Oceans. Baker (1982) examined the Sverdrup relation in 

Antarctic regions. Godfrey (1989) used the Sverdrup model with climatological annual winds 

(Hellerman and Rosenstein 1983) to calculate the mean depth-integrated streamfunction for the 

world ocean under two assumptions: (1) the ocean is stagnant below some depth, and (2) all major 

undersea topographic features such as mid-ocean ridges lie below that depth. 

The density-driven volume transport has been calculated by several authors. The density 

field directly determines the geostrophic velocity relative to the bottom flow. The bottom velocity 

(u-H, v-H)   is usually calculated using the β -spiral (Stommel and Schott 1977),  Box (Wunsch 

1978), and P-vector (Chu 1995, 2000; Chu et al. 1998a, b, 2001a, b) models. Since the geostrophic 

balance is used, these models provide the solutions for the extraequatorial hemispheres, but not for 

the equatorial region. An improved inverse method is developed in this study to bring together the 

two known solutions for the extraequatorial hemispheres across the equator and to establish a 

global velocity dataset.  

The rest of the paper is outlined as follows. Section 2 describes the basic theory of the 

model. Sections 3-5 describe depth-integrated velocity, volume transport streamfunction, and 

volume transport vorticity.  Section 6 depicts the Ψ -Poisson equation and its solver. Section 7 
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depicts the model sensitivity. Section 8 provides the global circulation characteristics. Section 9 

presents the conclusions.   

                                                        2. Dynamics 

2.1. Basic Equations 

Let (x, y, z) be the coordinates with x-axis in the zonal direction (eastward positive), y-axis 

in the latitudinal direction (northward positive), and z-axis in the vertical (upward positive). The 

unit vectors along the three axes are represented by (i, j, k). For the extra-equatorial region, the 

linear steady state system with the Boussinesq approximation is given by 

                                          
2
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2( )g z h
uf v v A A u

z
∂

− − = + ∇
∂

,                                                   (1) 

                            
2
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2( )g z h
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∂ ∂ ∂
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,                                                          (4) 

 
where ρ  is the in-situ density;  f =2 sinϕΩ ,  is the Coriolis parameter, Ω  the Earth rotation rate, 

and ϕ  the latitude. V = (u, v), is the horizontal velocity; w is the vertical velocity; 

/ /x y∇ = + ∂ ∂j∂ ∂i , is the horizontal gradient operator; Vg= (ug, vg), is the geostrophic velocity 

representing the horizontal pressure (p) gradients  

                                               
0 0

1 ,   vg g
1p pu

f y fρ ρ x
∂ ∂

= − =
∂ ∂

,                                         (5)     

where 0ρ  is the characteristic value (1025 kg/m3) of the sea water density. The two coefficients (Az, 

Ah) are the vertical and horizontal eddy diffusivities.   
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 The horizontal diffusivity Ah can be estimated by Smargrinsky parameterization,  

                                        ( )
2

T
h

DA x y= ∆ ∆ ∇ + ∇V V ,                                                     (6) 

where  

                        
1/ 22 22 1( )

2
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V V . 

Here, the nondimensional parameter D varies from 0.1 to 0.2 (Mellor, 2003); we set D = 0.15. The 

horizontal grid in this study is 1o×  1o, i.e., ( , ) 100 kmx y∆ ∆ ∼ . Let the spatial variability of the 

velocity be scaled by 0.1 m s-1, we have  

                    
1

6 1
5

0.1 m s( ) 2 2 10 s
10 m

T
−

− −∇ + ∇ × = ×V V ∼ .                      (7) 

Substitution of (7) into (6) leads to 

                                             .                                                              (8)         3 2 -1.5 10 m shA = × 1

2.2. Ekman Number 

The Ekman number can identify the relative importance of the horizontal gradient of the 

Reynolds stress versus the Coriolis force, 

                                                   
2

2

( )
( )

h h
O A AE

O f f L
∇

= =
V

V
,                                              (9) 

where L is the characteristic horizontal length scale. In this study, the motion with L larger than 200 

km is considered. For extra-equatorial regions (north of 8oN and south of 8oS),  

                                                       4 -10.2 10 sf −> × ,  

and the Ekman number is estimated by  

               
3 2 1

3
4 1 5 2

1.5 10 m s 1.875 10
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E
−

−
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×
<
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which shows that the horizontal gradient of the Reynolds stress can be neglected  against the 

Coriolis force, i.e.,  

                                                                  0hA = ,                                                                   (10a) 

for extra-equatorial regions.                                        

 For the equatorial regions especially near the equator, f  is very small. The Ekman number 

is not a small parameter. The horizontal viscous force, ( 2
hA u∇ , 2

hA v∇ ), cannot be neglected against 

the Coriolis force in the equatorial region, that is,  

                                                                      0hA ≠ ,                                                                 (10b) 

for the equatorial regions.                                        

 3. Depth-Integrated Velocity  

Let (U, V) and (Ug, Vg) be the depth-integrated horizontal velocity  

                                                    ,                                                                 (11) 
0

( , ) ( , )
H

U V u v dz
−

= ∫

and geostrophic velocity,  

                                               ,                                                                (12) 
0

( , ) ( , )g g g g
H

U V u v dz
−

= ∫

where z = -H(x, y) represents the ocean bottom, and z = 0 refers to the ocean surface.  Depth-

integration of (1) and (2) from the ocean bottom to the ocean surface leads to   

                 2 2( ) | | 2g z z z z H h h H h H
u uf V V A A A U A u H A u H
z zη= =− − −
∂ ∂

− − = − + ∇ − ∇ ∇ − ∇
∂ ∂

i ,              (13) 

        2 2( ) | | 2g z z z z H h h H h H
v vf U U A A A V A v H A v H
z zη= =− − −

∂ ∂
− = − + ∇ − ∇ ∇ − ∇

∂ ∂
i ,         (14) 

where (u-H, v-H) are velocity components at the ocean bottom.  

 The turbulent momentum flux at the ocean surface is calculated by 
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0

( , )
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u vA
z z η

τ τ
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∂ ∂
=

∂ ∂
,                                                         (15) 

where ( ,x yτ τ ) are the surface wind stress components.  The turbulent momentum flux at the ocean 

bottom is parameterized by 

                        2 2( , ) | ( ,z z H D H H H
u vA C u v u
z z =− − − − −
∂ ∂

= +
∂ ∂

)Hv ,                                        (16)  

where CD  = 0.0025 (Blumberg and Mellor, 1987) is the drag coefficient. 

The thermal wind relation can be obtained from vertical integration of the hydrostatic 

balance equation (3) from the bottom (-H) to any depth (z) and then the use of the geostrophic 

equation (5)  

                                      
0

'g H H

zgu u dz
f y

ρ
ρ− −

∂
= +

∂∫ ,                                                   (17) 

                                                    
0

'g H H

zgv v dz
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ρ
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∂
= −
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Substitution of (17) and (18) into the second equation of (12) leads to 

                                 ( , ) ( , )g g den H den HU V U Hu V Hv−= + + − ,                                       (19) 

where  

                        
0 0

0

( , ) ( ' ,    '
z z

den den
H H H H

gU V dz dz dz dz
f y x

ρ
ρ − − − −

∂ ∂
= −

∂ ∂∫ ∫ ∫ ∫ )ρ ,                       (20) 

 
is the density driven transport. Re-arranging (13) and (14), we have  

                             2
1

0

x
h den bA U fV fV fV A Qh

τ
ρ

∇ + = + − + ,                                          (21) 

                           2
2

0

y
h den bA V fU fU fU A Qh

τ
ρ
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where  

                           ,    ,  2
1 (2 )H HQ u H u− −≡ ∇ ∇ + ∇i H H2

2 (2 )H HQ v H v− −≡ ∇ ∇ + ∇i

and 

              2 2 2 2( ) ,   (D D
b H H H b H

C CH u v u V H u v v
f f− − − − − −= − + = + + )H HU ,                      (23) 

are the transport due to the bottom currents, or simply called the bottom transport.  With the known 

bottom velocity vector (u-H, v-H), the depth-integrated velocity (U, V) can be determined from the 

wind, density, and topographic data.   

 For the extra-equatorial regions, the horizontal diffusion can be neglected [see (8)]. Eqs.(22) 

and (21) become  

                          
0

* y
den bUU U

f
τ
ρ

= + + ,                                                            (24) 

                                         
0

* x
den bVV V

f
τ
ρ

= + − .                                                             (25) 

With the known (u-H,v-H), the depth-integrated flow (U*, V*) may be directly calculated using (24) 

and (25).    However, the computed (U*, V*) field using (24) and (25) is quite noisy and cannot not 

be the final product. Thus, the subscript ‘*’ is used to represent the interim depth-integrated 

velocity calculated using (24) and (25).  

 4. Volume Transport Streamfunction  

 Integration of the continuity equation with respect to z from the bottom to the surface 

yields,  

                           0H H
U H V Hu v w
x x y y− −

∂ ∂ ∂ ∂
+ + + −

∂ ∂ ∂ ∂ H− = .                                          (26)                

With the assumption that the water flows following the bottom topography, 
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                                   H H H
Hw u v H
x y− − −

∂ ∂
= +

∂ ∂
,                                                           

Eq.(26) becomes  

                                                        0U V
x y

∂ ∂
+ =

∂ ∂
,                                                                  

which leads to the definition of the volume transport streamfunction Ψ ,  

                                      ,    V
y x

U ∂Ψ
= − =

∂Ψ
∂ ∂

.                                                             (27) 

Subtraction of the differentiation of (22) with respect to y from the differentiation of (21) with 

respect to x gives 

                                                                       (28) 2 ,    ∇ Ψ = Π

where        

            ( ) ( ) ( ) ( )1 1 den den b bfV fU fV fU
f x y f x y
  ∂ ∂ ∂ ∂

Π ≡ − + −  ∂ ∂ ∂ ∂  





.                    

                              1 2

0 0

1  yx hA Q Q
f x x f x

ττ
ρ ρ

      ∂ ∂∂ ∂
− + + +     ∂ ∂ ∂ ∂      y


 ,                                          (29) 

is the volume transport vorticity. Eq.(28) is called the Poisson Ψ -equation. 

 5.  Volume Transport Vorticity 

 5.1. Volume Transport Vorticity Equation 

 Summation of the differentiation of (21) with respect to y and the differentiation of (22) 

with respect to x gives the volume transport vorticity equation, 

                    2 2

0

1( ) ( )y x
den b

h h

Q QV V V
A A x y x

1

y
τ τβ

ρ
∂  ∂ ∂ ∂

∇ Π = − − − − + − ∂ ∂ ∂ ∂ 
,                     (30) 

where /df dy,β =  and (28) is used. 
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 5.2. Extra-Equatorial Region 

 For the extra-equatorial region, the horizontal diffusion can be neglected [see (8)]. 

Substitution of Ah into 0 leads to  

      ( ) ( ) ( ) ( )1 1 den den b bfV fU fV fU
f x y f x y
  ∂ ∂ ∂ ∂

Π ≡ − + −  ∂ ∂ ∂ ∂  



 0 0

1 yx

f x x
ττ

ρ ρ
    ∂ ∂

− +    ∂ ∂    
.            (31) 

Similarly, (30) becomes 

                      
0

1( ) ( y x
den bV V V )

x y
τ τβ

ρ
∂ ∂

− − = −
∂ ∂

,                                                (32) 

which is the Sverdrup relation.  

 In (31), (Uden, Vden) depend on ρ  only; ( ,x yτ τ ) are wind stress components; and (Ub, Vb) are 

determined by the bottom current velocity (u-H, v-H). The P-vector inverse method (Chu 1995, 2000, 

Chu et al. 1998a, b) is used to determine (u-H, v-H) from hydrographic data (see Appendix A). In this 

study, the climatological hydrographic data (Levitus et al. 1994) are used to compute (Uden, Vden) 

[see (20)]. The climatological surface wind stress ( ,x yτ τ ) data are obtained from the 

Comprehensive Ocean-Atmosphere Data Set (COADS, Da Silva et al. 1994).  The bottom 

topography is obtained from the Navy’s Digital Bathymetry Data Base 5-mimute (DBDB5) (Fig. 

1).   The volume transport vorticity Π  is quite noisy.  

5.3. Equatorial Region (between 8oS and 8oN) 

Let the volume transport vorticity Π  calculated using (31) at 8oN and 8oS as the northern 

and southern boundary values of the vorticity equation (30).  Here, the forcing terms [righthand-

side of (30)] are calculated with the assumptions that (1) f = f(8oN) north of the equator, and f = 

f(8oS) south of the equator, and (2) (U, V) are calculated by (24) and (25). With the given forcing 

terms and the northern and southern boundary conditions and the cyclic eastern and western 
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boundary conditions, the volume transport vorticity equation (30) can be solved in the equatorial 

region between 8oN and 8oS.  The computed Π -field is quite smooth. 

 so

rtheC

)

                          6. Poisson Ψ -Equation    

 6.1. Boundary Conditions  

 With the computed global volume transport vorticity (Π ), the Poisson Ψ -equation (28) can 

be solved when the boundary conditions are given. No flow over the Antarctic Continent leads to 

the southern boundary condition  

                                 1,    at the uthern boundary  sCΨ = =y y

y y

.                                    (33) 

No horizontal convergence of the 2-dimensional flow (U, V) at the North Pole (treated as an island) 

leads to the northern boundary condition  

                              ,                                       (34) 2,   at the no rn boundary   nΨ = =

 
where C1 and  C2 are constants to be determined. The cyclic boundary condition is applied to the 

western and the eastern boundaries (Fig. 2). We integrate */ y U∂Ψ ∂ = −  with respect to y along the 

western (or eastern) boundary from the southern boundary (Ψ = 0) to the northern boundary to 

obtain  

                                          .                                          (35) *
west west| ( ( , ')

s

y

y

y U x y dΨ = −∫ 'y

)y

The cyclic boundary condition leads to  

                                                 east west| ( ) | (yΨ = Ψ .                                                 (36) 

 
Thus, the northern boundary condition is given by 

                                              .                                            (37) *
west 2( , )

n

s

y

y

U x y dy CΨ = − =∫
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  6.2. -Values at Islands Ψ

Before solving the Poisson -equation (28) with the boundary conditions (33), (34), (35), 

and (37), we need to know the Ψ -values at all islands. These values were subjectively set up in 

some earlier studies. For example, in calculating the geostrophic transport in the Pacific, Ocean 

Reid (1997) set up Ψ -value to be 0 for Antarctic, 135 Sv (1 Sv =106 m3s-1) for Australia, and 130 

Sv for America. In calculating the geostrophic transport in the South Atlantic Ocean, Reid (1989) 

set up -value to be 0 for Antarctic, 132 Sv for Africa, and 130 Sv for America. Such a treatment 

subjectively prescribes 130 Sv through the Drake Passage and 132 Sv through area between Africa 

and Antarctica. 

Ψ

Ψ

 An objective method depicted in Appendix-B is used to determine -values at islands.  

Fig. 3 shows the distribution of -value for each continent/island computed from the annual, 

January, and July mean hydrographic and wind data. Taking the annual mean as an example, we 

have: 0 for the American Continent, 157.30 Sv for Antarctica, -21.74 Sv for Australia, -27.17 Sv 

for Madagascar, and -21.74 Sv for New Guinea. 

Ψ

Ψ

                                              7. Model Sensitivity  

 With the given values at the boundaries and islands, we solve the Poisson -equation (28) 

with climatological annual and monthly 

Ψ

Π -fields and obtain annual and monthly global Ψ -fields. 

After that, we use (27) to re-compute the depth-integrated velocity (U, V). Since 1o× 1o 

hydrographic (Levitus and Boyer 1994; Levitus et al.1994) and wind data (da Silva et al. 1994) are 

used to compute -fields, small-scale topographic features such as English Channel, Taiwan 

Strait, Gilbralta Strait, and Bering Strait cannot be resolved in this study. Here, we present the 

annual and monthly (January and July) mean 

Ψ

Ψ -fields obtained using the inverse model. The 

global -field (Fig. 4) and depth-integrated velocity vector (U, V) field (Fig. 5) agree reasonably Ψ
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well with earlier studies (e.g., Reid 1989, 1994, 1997; Semtner and Chervin 1992) and shows the 

capability of the inverse model for determining main characteristics of global circulation such as 

the strong Antarctic Circumpolar Current, the well-defined subtropical and subpolar gyres, and the 

equatorial current system. We will discuss these features for each ocean basin in Section 8. 

 The hydrographic and wind data contain errors (observational errors). The horizontal 

diffusion coefficient Ah is uncertain. Sensitivity study is conducted on the solutions to uncertain Ah 

and the observational data before discussing the calculated circulation characteristics. First, the 

model is integrated with different values of the horizontal diffusivity Ah. There is almost no 

difference among the -fields with different values of diffusivity Ah between 1.5×103 and 5Ψ ×105 

m2 s-1.  

 Second, suppose the observational data errors to be represented by a Gaussian-type random 

variable (δχ ) with a zero mean and a standard deviation of  σ  whose probability distribution 

function is given by 

                                   ( )2

2

1( ) exp
22

F
δχ

δχ
σπ

 
= − 

  
.                                                        (38) 

In this study, a random number generator (FORTRAN function, Ranf) is used to produce two sets 

of random noises for each grid point independently, with mean value of zero and standard deviation 

of σ : (a) three-dimensional temperature error field with standard deviation of  0.2oC and (b) two 

dimensional surface wind stress error field with standard deviation of 0.05 N m-2. The model 

stability is confirmed from almost no difference between the Ψ -field with random errors in 

temperature   and/or surface wind stress data and the Ψ -field with no error added.  Thus, this 

inverse model has the capability to filter out noise in the forcing terms because of the major 

mathematical procedures of the model containing two integrations of the Poisson equation. 
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                                       8. Global Circulation Characteristics 

The depth-integrated velocity vector field (U, V) is presented to illustrate the capability of 

this inverse model. However, it is not our intention to review the general circulation features. 

Interested readers are referred to Schmitz (1996a, b). 

8.1. Southern Ocean 

8.1.1. Antarctic Circumpolar Currents at the Drake Passage 

The computed monthly mean volume transport through the Drake Passage is around 156 Sv 

with a small seasonal variation (Fig. 6), which compares well with the estimate of 134 Sv by 

Nowlin and Klink (1986), although observed Antarctic Circumpolar Current transports are subject 

to uncertainties of tens of Sverdrups depending on the contribution of weak flows at depth.  

           8.1.2. Weddell Cyclonic (Clockwise) Gyre 

In the Weddell Sea, which probably contributes most to Bottom Water formation, the water 

flows westward under the influence of the Coriolis force as it sinks, forming a thin layer of 

extremely cold water above the continental slope. It mixes with the overlying water, which is 

recirculated with the large cyclonic eddy in the central Weddell Sea. The Weddell Sea is one of the 

few places in the world ocean where deep and bottom water masses are formed to participate in the 

global thermohaline circulation. The characteristics of exported water masses are the result of 

complex interactions among surface forcing, significantly modified by sea ice, ocean dynamics at 

the continental shelf break and slope (Foldvik et al. 1985; Muench and Gordon 1995) and sub-ice 

shelf water mass transformation. 

The most striking feature of the inverted January mean Ψ  and (U, V) fields in the Weddell 

Sea (Fig. 7) is the existence of the double-cell structure of the Weddell Gyre as suggested by the 

hydrographic observations (Mosby 1934; Deacon 1979; Bagriantsev et al. 1989) and the numerical 
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simulation of a regional coupled ice-ocean model (Beckmann et al. 1999). Our computation shows 

one cell filling the western Weddell Basin and the other trapped in a deeper basin northeast of 

Maud Rise. The west cell and the east cell circulate 4-5 Sv and 30 Sv, respectively. The west cell is 

weaker than earlier studies (e.g., Beckmann et al. 1999). 

8.1.3. Ross Cyclonic (Clockwise) Gyre 

The Ross Sea and adjacent Southern Ocean represent important areas of biogenic 

production and potentially large sources of biogenic material to the water column and sediments. 

Current meter moorings show that the general circulation in the Ross Sea surface waters is 

cyclonic, with a slow southward flow in the central and eastern Ross Sea (Pillsbury and Jacobs 

1985). On the basis of moored current meter data, DeMaster et al. (1992) pointed out the following 

facts: The flow in the southern Ross Sea is typically westward. This circulation is well developed in 

the surface waters and extends to depth as well. Current speeds at 40 m above the seabed are 

relative low, on the order of 0.1 m s-1. The inverted January circulation patterns (Fig. 8) shows that 

the Ross Sea cyclonic gyre re-circulates 15-30 Sv, which agrees well with Reid (1997).  

8.2. Pacific Basin 

8.2.1. General Features 

The annual mean northward transport across the equator in the west is 21.7 Sv, between the 

-21.7 Sv isoline at the western boundary (northeast coast of New Guinea) to the 0 Sv isoline near 

170oW (Fig. 4a). This current meanders and generates several eddies such as the Mindanao Eddy 

(cyclonic) near southern Phillippines and the Halmahera Eddy (anticyclonic) near Indonesia. The 

northward current joins the North Equatorial Current with 30 Sv transport (from 0 to 30 Sv isoline) 

east of the Phillippines (10o-15oN). Of these 51.7 Sv of water, 21.7 Sv are lost to the Indonesian 

Seas directly, or via the South China Sea indirectly. The remaining 30 Sv of water continues 
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northward to Japan and then eastward with the anticyclonic gyre. This subtropical gyre recirculates 

20 Sv between 25o-35oN (from 30 to 50 Sv isoline) and makes 50 Sv of the Kuroshio Current east 

of Japan.  Longitudinal dependence of  Ψ  along the dateline and 150oW (Fig. 9) in the equatorial 

region show the existence of the westward flowing South Equatorial Current (∆Ψ ) 

between 3oS and 12oS, eastward flowing Equatorial Counter Current (

/ 0y∆ >

/ 0y∆Ψ ∆ < ) between 3oS 

and 2oN, and westward flowing North Equatorial Current ( / 0y∆Ψ ∆ > )  between 2oN and 12oN.  

There are several low-latitude cyclonic gyres, with axes along 8oN and 8oS. Among them, 

an evident cyclonic gyre occurs in the north equatorial region between 180o-120oE, and three 

smaller cyclonic eddies (also called broken gyres) appear in the south equatorial region, east of 

170oE. The north equatorial gyre appeared clearly on the study by Munk (1950) of the wind-driven 

circulation of the North Pacific, and was identified by Reid (1997) using hydrographic data. The 

south equatorial gyre identified in this study (broken gyre) is different from Reid's (1965) and 

Tsuchiya's (1968) description of a complete gyre structure. The south subtropical anticyclonic gyre 

occurs east of 180oE between 12oS and 45oS and re-circulates 30 Sv of water. 

8.2.2. Pacific-Indian Ocean Throughflow Region 

The Indonesian throughflow is the only inter-basin exchange of water at low latitudes from 

the Pacific to the Indian Ocean. The calculated monthly mean Ψ  and (U, V) fields in the vicinity of 

Indonesia (Fig. 10) shows the volume transport and the depth-integrated circulation pattern have 

weak seasonal variations and are quite similar to surface to intermediate depth currents shown in 

the earlier description (e.g., Fine et al. 1994; Lukas et al. 1996; Godfrey 1996): Water from the 

Pacific Ocean enters the Indonesian near the region where the New Guinea Coast Current (10 Sv) 

meets the Mindanao Current (10-20 Sv), as well through the South Sulu Sea from the South China 
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Sea (Fig. 10). The New Guinea Coast Current transports 10 Sv water around the Halmahera Eddy 

into the southeastward flowing North Equatorial Countercurrent.  

The North Equatorial Current bifurcates east of the Phillippines, with the southern branch 

becoming the Mindanao Current and the northern branch becoming the Kuroshio. Part of the water  

flowing southward in the Mindanao Current retroflects 10-20 Sv around the Mindanao Eddy to join 

the North Equatorial Countercurrent, while the remainder enters the Celebes Sea, where some 

South Pacific water passes into the Indonesian seas near Halmahera. The majority of the Indonesian 

throughflow water exits to the Indian Ocean through the Timor Strait, with smaller transport 

through the Savu Sea and Lomok Strait. The Mindanao Eddy (cyclonic) near the southern 

Philippines and the Halmahera Eddy (anticyclonic) near Indonesia are well represented in the 

inverted  and  (U, V) fields (Fig. 10). No strong flow is obtained through the Makassar Strait in 

the present computation that is the discrepancy with the earlier studies.  

Ψ

The monthly volume transport between Bali (8oS, 113.5oE) and northwest coast of Australia 

(20oS, 120oE) represents most of the Indonesian throughflow (Fig. 11) and shows a weak seasonal 

variability with a maximum value of 22.9 Sv in December and a minimum value of 20.3 Sv in 

August. Our estimation (Fig. 11) agrees well qualitatively with the observational data (16.2 Sv) 

collected along the same section (Bali to Australia) in August 1989 by Fieux et al. (1994) and with 

the numerical simulated data (25.7 Sv using the 1.5 reduced gravity model, 15.8 Sv using the 

nonlinear six-layer model) reported by Morey et al. (1999). 

8.2.3. Kuroshio Transport and its Intrusion into the South China Sea 

Difference of the -values between Japan and the center of the subtropical gyre is used as 

the Kuroshio volume transport (Fig. 12). The monthly Kuroshio volume transport is very steady 

Ψ
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(very weak seasonal variation) with the transport from 57.7 to 62.4 Sv (Fig. 12). Our calculation of 

the Kuroshio volume transport agrees with Schmitz's (1996) estimation (52.4 Sv). 

The seasonal variation of the intrusion of the Kuroshio Water into the South China Sea 

through the Luzon Strait has been investigated by many authors (e.g., Shaw 1989; Chu and Li 

2000). Shaw (1989) used the discriminant method to classify the water mass T, S characteristics at 

150, 200, and 250 meters, and found that the water characteristics of the Philippine Sea (Kuroshio) 

were identifiable along the continental margin south of China from October to January. The 

presence of this water indicated an intrusion current from the Philippine Sea into the South China 

Sea. Chu and Li (2000) used the P-vector inverse method (Chu 1995, 2000) to determine the 

isopycnal surface geostrophic velocities in the South China Sea. The annual and monthly mean 

volume transports through the Luzon Strait (Fig. 13) show Kuroshio intrusion all year round with a 

seasonal variation (8-15 Sv). This estimate is larger than existing estimations such as 2-3 Sv 

(Wyrtki 1961), 8-10 Sv (Huang et al. 1994), 2.4-4.4 Sv (Metzger and Hurlburt), and 1.4-13.7Sv 

(Chu and Li 2000). 

8.2.4. Australian Mediterranean and South Australian Gyre 

The ( , U, V) fields (Fig. 14) shows the following features: The southward flowing East 

Australia Current is the western boundary current of the southern hemisphere. It is the weakest of 

all boundary currents, carrying only about 10 Sv. The current first follows the Australian coast, 

then separates from it somewhere near 34oS (the latitude of the northern end of New Zealand's 

North Island). This current recirculates (10 Sv) and forms an anticyclonic (anti-clockwise) eddy. 

The path of the current from Australia to New Zealand is known as the Tasman Front, which makes 

the boundary of the warmer water of the Coral Sea and the colder water of the Tasman Sea. In the 

Ψ
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South Autralian Basin, an anti-cyclonic eddy is identified and recirculates 10 Sv with a weak 

seasonal variation. 

8.3. Atlantic Basin 

8.3.1. General Features 

Setting aside the part of Pacific west of New Zealand and the Tonga-Kermadec Ridge, 

which has no counterpart in the Atlantic, there is some correspondence in the features (Figs. 4 and 

5). Each basin has an anticyclonic gyre in the mid-latitudes of both hemispheres, mostly west of the 

major ridge, with two cyclonic gyres in between (low-latitudes). 

The low-latitude dual cyclonic gyres have a larger latitudinal span in the Atlantic Basin 

(30oS-30oN) than in the Pacific Basin (10oS-20oN). The common branch of the dual cyclonic gyres 

forms the eastward flowing equatorial currents. For the Atlantic Basin, there is some 

correspondence between the transports north and south of the equator aside from the Caribbean and 

Gulf of Mexico, which has no counterpart in the South Atlantic. The mid-latitude anticyclonic 

gyres in the North Atlantic and the South Atlantic have a comparable strength (50 Sv). We may 

also identify following major features from Figs. 4 and 5: the Gulf Stream, the Labrador Basin 

cyclonic gyre, and the Brazil-Malvinas confluenece zone. 

8.3.2. Gulf Stream Volume Transport 

The Gulf Stream volume transport can be easily identified as the difference of -values at 

the North Atlantic continent and at the center of the subtropical gyre. The monthly mean Gulf 

Stream transport is quite steady with a maximum transport of 62 Sv in October and a minimum 

transport of 52 Sv in March and April (Fig. 15). The calculated Gulf Stream volume transport (57 

Sv) is too weak compared to the value of 120 Sv found after detachment from Cape Hatteras when 

Ψ
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encompassing the Southern Recirculation gyre transport (Hogg 1992). This is due to the smoothed 

nature of the climatological wind and hydrographic data used. 

8.3.3. Brazil-Malvinas Confluence 

From its littoral margin to the open ocean, the western South Atlantic is marked by the 

circulation patterns and exchange processes that are centrally important to the regional marine 

resources and local economics, and equally important to the global flux of heat and dissolved 

substances (Campos et al. 1995). The depth-integrated western boundary current (Brazil Current) 

originates from the South Equatorial Current (Figs. 4 and 5). A major change in the flow patterns 

along the western boundary occurs in the southern Brazil Basin. Among other important 

characteristics, the Southwest Atlantic is characterized by the presence of the Brazil Current, a 

warm western boundary current that, while weaker than the Gulf Stream in terms of the mass 

transport, is energetically comparable to its North Atlantic counterpart, particularly in the region of 

confluence with the northward-flowing Malvinas Current at approximately 38oS (Fig. 16). The 

western limb of the recirculation cell (anticyclonic) separates from the continental slope at about 

38oS upon its confluence with the northward-flowing Malvinas  Current, whereupon the bulk of the 

Malvinas retroflects cyclonically (clockwise) back toward the southeast while lesser portions 

continue northeast along the coast. On the eastern side of the cyclonic trough is the combined 

southeastward flow of Malvinas and Brazil Current waters that extend to 45oS before the 

subtropical waters turn east and north to form the pole-ward limits of the subtropical gyre. The 

Malvinas waters continue south to the southern margin of the Argentine Basin (49oS) before 

turning east with the Antarctic Circumpolar Current regime. Our results are consistent with the 

earlier studies (e.g., Peterson and Whitworth 1989). The Brazil-Malvinas confluence occurs all year 

round with a very weak seasonal variability. 
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8.4. Indian Ocean 

The depth-integrated circulation pattern in the Indian Ocean is depicted in Figs. 4 and 5. 

Here, we discuss characteristics of the Agulhas Current System and Transport Through the 

Mozambique Channel as examples showing the model capability. The Agulhas Current is the 

western boundary current in the Indian Ocean. It retroflects, meanders and sheds discrete eddies 

that translate into and across the South Atlantic Ocean. This is the major contributor to the inter-

basin exchanges of heat and salt between the South Indian and the South Atlantic Oceans (Gordon 

1985). 

8.4.1. Agulhas Current Retroflection 

The model inverts the Agulhas Current System (Fig. 17) well with earlier depictions (e.g., 

Gordan 1985; Schmitz 1996a, b). The South Equatorial Current bifurcates into northward and 

southward branches at the northwestern coast of Madagascar. The southward branch (East 

Madagascar Current) carries 20-30 Sv and merges with the western boundary current (20-30 Sv) 

through the Mocabique Channel to form the Agulhas Current (50 Sv). This current retroflects at 

40oS near the southern tip of Africa and the return current becomes the east wing of a permanent 

eddy (Agulhas Eddy, anticyclonic) which recirculates 10 Sv. We also see another anticyclonic eddy 

(10 Sv) occurring in all monthly fields in the South Atlantic west of the south tip of Africa. 

8.4.2. Transport at the Mozambique Channel 

The southward flow through the Mocabique Channel is a major contributor of the Agulhas 

Current. The volume transport through this channel is calculated by the difference of  -values for 

the African continent and for Madagascar. The monthly mean transport through the Mozambique 

Channel has a weak seasonal variation with a maximum transport of 31 Sv in December and a 

minimum transport of 23 Sv in August (Fig. 18). 

Ψ
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                                                  9. Conclusions 

 (1) An inverse model is constructed to calculate the depth-integrated circulation and volume 

transport streamfunction using surface wind and hydrographic data. This model contains four major 

components: (a) the P-vector inverse model to obtain the solutions for the two extraequatorial 

hemispheres (see Appendix-A), (b) the objective  method  to  determine the -values at individual 

islands (see Appendix-B),  (c) the Poisson equation-solver to obtain the  -values over the 

equatorial region from the volume transport vorticity equation (30), and (d) the Poisson equation-

solver to obtain the  and depth-integrated velocity field  (U, V) over the globe from the Poisson 

-equation.  

Ψ

Π

Ψ

Ψ

 (2) The Poisson equation solver is similar to the box inverse model developed by Wunsch 

because both methods are based on mass conservation. The P-vector method provides the interim 

solutions with noise (appearing in the forcing terms in the Poisson equation) for extra-equatorial 

region and the integration of the Poisson equation (box type method) filters out the noise and 

provides final solutions. Thus, the proposed method has the strength from both P-vector and box 

models. 

(3) This inverse model uses realistic topography and has capability to filter out noise (in the 

forcing terms) since two Poisson equations are integrated. The inverted volume transport is 

insensitive to noise in wind and hydrographic data. These features make it applicable for practical 

use. 

(4) The inverted global and regional depth-integrated circulation patterns agree well with 

earlier studies. The monthly  and (U, V) fields provide realistic open boundary conditions for 

regional/coastal models. 

Ψ
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(5) An objective method is developed to determine Ψ -values at the islands on the base of 

Stokes Circulation Theorem (see Appendix-B). This method contains two components: (a) an 

algebraic equation for linking the -value of the island to the circulation around it and the Ψ Ψ -

values in the neighboring water, (b) an iterative algorithm for determining the -value at the 

island. Determination of Ψ -values at islands using this objective method is not sensitive to the 

noise level.                                   

Ψ
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               Appendix-A          P-Vector Inverse Method 

 As pointed out by Wunsch and Grant (1982), in determining large-scale circulation from 

hydrographic data, we can be reasonably confident of the assumptions of geostrophic balance, mass 

conservation, and no major cross-isopycnal mixing (except for water masses in contact with the 

atmosphere). Under these conditions, the density of each fluid element would be conserved, which 

mathematically is given by which changes into  

                                             0ρ∇ =Vi .                                                                                 (A1) 

The conservation of potential vorticity equation can be obtained by differentiating (A1) with 

respect to z, using geostrophic and hydrostatic balances (5) and (3), and including the latitudinal 

variation of the Coriolis parameter,  

                                                      ,                                                                              (A2)   

where q is the potential vorticity 

0q∇ =Vi
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                                                       q f
z
ρ∂

=
∂

.                                                                               (A3)                      

It is noted that neglect of relative vorticity may induce a small but systematic error into the 

estimation of potential vorticity. 

 When the constant ρ -surface intersects the constant q -surface (Fig. A1.), it is true that  

                                                     0qρ∇ ×∇ ≠ . 

A  unit vector, called the perfect vector (or P-vector) by Chu (1995),  can be defined by 

                                             
| |

q
q

ρ
ρ

∇ ×∇
=

∇ ×∇
P .                                                                      (A4)  

Eqs. (A1) and (A2) show that V is perpendicular to both ρ∇  and q∇ , and thus, V is parallel to P,   

                                                        γ=V P ,                                                                                (A5)  

where γ is a scalar and its absolute value γ  is the speed. 

  A two-step method was proposed by Chu (1995) (i.e., the P-vector inverse method): (a) 

determination of the unit vector P, and (b) determination of the scalar γ  from the thermal wind 

relation.  Applying the thermal wind relation,  

                                                    
0

z

H
H

gu u dz '
f y

ρ
ρ−

−

∂
= +

∂∫ ,                                                           (A6) 

                                                       
0

'
z

H
H

g dzv v
f x

ρ
ρ−

−

∂
= −

∂∫ .                                                                  (A7)            

at two different levels zk and zm  (or kρ  and mρ ),  a set of algebraic equations for determining the 

parameter γ  are obtained   

                                          ( ) ( ) ( ) ( )k k m m
x xP Pγ γ kmu− = ∆ ,                                                     (A8) 

                                                    ( ) ( ) ( ) ( )k k m m
y yP Pγ γ kmv− = ∆ ,                                                       (A9) 
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where    
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If the determinant  

                                              
( ) ( )

( ) ( ) 0
k m

x x
k m

y y

P P
P P

≠ ,                                                              (A11) 

the algebraic equations (A8) and (A9) have unique solution for ( )kγ ( m k≠ ),  
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x x
k m

y y

u P
v P

P P
P P

γ

∆
∆

= .                                                             (A12) 

As soon as ( )kγ  is obtained, the absolute velocity V is easily computed using (A5).   

 

Appendix-B Stokes Circulation Theorem for Determining -Values for   

Islands 

Ψ

B1.  Stokes Circulation Theorem 

 Consider the (x, y) plane with uniform grids ( ,x y∆ ∆ ). Let the ocean basin be represented by 

domains  and islands be represented by   Ω jΩ  (j =1, ..., N) with horizontal boundaries of closed 

solid-wall segments of  jδΩ , j = 1,..., N.  The domain Ω  may have open boundaries. Fig. A2 

shows a schematic illustration of such a domain with three open boundary segments, and two 

islands. To determine the boundary conditions for islands, McWilliams (1977) defined a simply 

connected fluid region between an island ( jδΩ ) and a clockwise circuit in the fluid interior ( jδω ). 

Let Cj denote the closed area bounded by jδΩ and jδω , and (n, s) be the normal (positive outward) 
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and tangential unit vectors along the boundaries of Cj.   The circulation around the boundary of Cj  

is calculated using the Stokes Theorem,                       

                   ,                                          (B1) ( )
j j

jC

dl dl dxdy
δ δωΩ

− • + • = • ∇×∫ ∫ ∫∫V s V s k Vv v

where l is the path along the boundaries of Cj, k is the unit vector in the vertical direction, ∇  is the 

horizontal gradient operator. The direction of closed integration ∫v  is defined as anticlockwise. 

Substitution of (27) into the first term in the lefthandside of (B1) leads to  

                       ,                                     (B2) ( )
j j

jC

dl dl dxdy
δ δωΩ

∇Ψ • = • − • ∇×∫ ∫ ∫∫n V s k Vv v

which links the -values at the island Ψ jΩ  to the surrounding velocity field. The smaller the area 

of Cj, the smaller the value of the second term in the righthandside of (B2), i.e., 

                                                                                (B3)                 as  0,
j

j jdl C
δΩ

∇Ψ • →Γ →∫ nv

where  

 
j

j dl
δω

Γ = •∫ V sv . 

Thus, selection of jδω  with a minimum Cj becomes a key issue in determining the 

streamfunction .  Such a circuit (|
jΩΨ *

jδω ) is called the minimum circuit along the island jΩ  (Fig. 

A3). Let (Il ,Jl) (l = 1,...N+1) be the anticlockwise rotating grid points along *
jδω  with (IN+1, JN+1) = 

(I1, J1), and let the circulation along *
jδω  be denoted by ˆ

jΓ  and computed by 

          [ ], 1 1 1 1
1

1ˆ ( ) ( , ) ( ) ( )
2

N

j l l l l l l L
l

lI J I J I I x J J+ + + +
=

 Γ = + • − ∆ + − ∆ ∑ V V i j y ,              (B4)        

which is solely determined by the island geometry and the velocity field V. 

  B2. Algebraic Equation for Ψ -Value at Island- jΩ  
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            The lefthand side of (B3) is discretized by   
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x

+
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=
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Since the grid points on the island  are always on the left side of the anticlockwise circulation 

 (Fig. A3), half grid points of (A4) are in the island and half in the water.  Thus, Eq. (B4) can be 

written by 

jΩ

ˆ
jΓ

                                             ( )|
j

w
j jA ΩΓ = Ψ +Γ

where Γ  is the circulation in the water and  ( )w
j

                           1 1

1 2 2

N
l l l l

l

J J y I I x
A

x y
+ +

=

 − ∆ − ∆
= − + ∆ ∆ 
∑


. 

The volume transport streamfunction at Island- jΩ  is computed by  

                                             
( )ˆ

|
w

j j

j AΩ
Γ −Γ

Ψ = .                                                       (B5) 

 
           B3. Iteration Process 

Eq.(B5) cannot be directly used to compute |
jΩΨ  even if the vertically integrated velocity 

(U, V) is given. This is because that the Ψ -values at surrounding water is still undetermined. Thus, 

we need an iterative process to determine |
jΩΨ  from a first guess value. 
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Suppose all the islands Ω  (j = 2, ..., N) in Fig. A2 to be removed. With the given boundary 

conditions at 

j

1δΩ , we solve the -Poisson equation (28) and obtain the solution Ψ *Ψ (x, y).  

Average of  over  leads to the first guess *Ψ jΩ Ψ -values at islands jΩ  (j  = 2, ..., N), 

 *| (0) ( , )
j j

x y dxdyΩ Ω
Ψ = Ψ∫∫ . 

Let -values and the circulation  be given at the m-th iteration such that  Ψ ˆ
jΓ

                             

* ( ) ( )
| ( )

j

j k k
k

m B
m

AΩ

Γ − Ψ
Ψ =

m∑
,                                          (B6)     

where the minimum circuit circulation at the m-th iteration, , might not be the same as * ( )j mΓ ˆ
jΓ .  

We update  using  |
jΩΨ

                                            

* ( ) ( )
| ( )

j

j k k
k

m B
m

AΩ

Γ − Ψ
Ψ =

m∑
 .                                       (B7) 

 

Subtraction of (B6) from (B7) leads to 

                                      
*ˆ ( )

| ( 1) | ( ) j j

j j

m
m m

AΩ Ω
Γ −Γ

Ψ + = Ψ + ,                                  (B8) 

which indicates the iteration process: (a) solving the Ψ -Poisson equation (28) with  to 

obtain solutions and in turn to get ,  (b) replacing the 

| (
j

mΩΨ )

* ( )j mΓ Ψ -values at islands using (B8). The 

iteration process repeats until reaching a certain criterion 

                                                   
*

ˆ
δ

ε≤
Γ

Γ
,                                                                (B9)      

where  
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2

1

1ˆ ˆ
N

j
jN =

 ≡ Γ ∑Γ ,     
2* * *1 ( 1) ( )j jm m

N
δ  ≡ Γ + −Γ Γ ,                     (B10)      

and ε  is a small positive number (user input), which is set to be 10-6 in this study. As soon as the 

inequality (B9) is satisfied, the iteration stops and the final set of { |
jΩΨ , j = 1, 2, …, N} become 

the optimal -values for islands. Ψ
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                                  Figure Captions  

Figure 1. Bathymetry of world oceans. 
 
Figure  2. Boundary conditions of  for the global ocean. Ψ
 
Figure  3. Computed -values for each continent/island: (a) annual mean, (b) January, and (c) July. Ψ
           
Figure  4.  Global volume transport stream function (Ψ ) computed from the inverse model: (a) 
annual mean, (b) January, and (c) July. 
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Figure 5. Global depth-integrated velocity (U, V) vectors computed from the inverse model: (a) 
annual mean, (b) January, and (c) July. 
 
Figure  6.  Monthly volume transport through the Drake Passage with a small seasonal variation. 
    
Figure   7.     Inverted January  and (U, V) vector fields in the Weddell Sea.  Ψ
 
Figure  8.  Inverted January  and (U, V) vector fields  in the Ross Sea.  Ψ
 
Figure 9.  Annual mean volume transport streamfunction at dateline and 150oW.  
         
 
Figure  10. Inverted annual mean  and  (U, V) vector fields in the vicinity of Indonesian seas. Ψ
          
Figure 11.  Inverted volume transport between Bali (8oS, 113.5oE) and northwest coast of Australia 
(20oS, 120oE): (a) annual mean -field, and (b) monthly variability. Ψ
           
Figure  12. Monthly variation of the Kuroshio transport. 
    
Figure  13.  Monthly variation of volume transport through the Luzon Strait into the South China Sea. 
 
Figure 14.  Inverted annual mean  and (U, V) vector fields in the vicinity of the Australian 
Mediterranean sea and the South Australian Basin.  

Ψ

       
Figure  15. Inverted monthly volume transport between the North American east coast and the 
center of the subtropical gyre representing the Gulf Stream transport. 
         
Figure 16.  Inverted annual  mean  and  (U, V) vector fields in the southwestern South Atlantic 
Ocean. 

Ψ

                     
Figure  17.  Inverted annual mean  and  (U, V) vector fields in the vicinity of the south tip of 
Africa representing the Agulhas Retroflection. 

Ψ

 
Figure  18.  Monthly mean transport through the Mozambique Channel. 
                               
Figure A1.   Intersection of constant q and ρ surfaces and the vector P.   
 
Figure A2. A multiply connected domain. The arrows indicate the directions of integration along 
the line integral paths defined in the text. 
 
Figure A3. Grid points of the minimum circuit along the island jΩ . 
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                                   Figure 1.  Bathymetry of the world oceans. 
 
 
 
 
 

                  
                          Figure  2. Boundary conditions of Ψ  for the global ocean. 
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Figure   3. Computed -values for each continent/island: (a) annual mean,  (b) January, and (c) July. Ψ
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Figure 4. Global volume transport stream function (Ψ ) computed from the inverse model: (a) 
annual mean, (b) January, and (c) July. 
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Figure  5. Global depth-integrated velocity (U, V) vectors computed from the inverse model: (a) 
annual mean, (b) January, and (c) July. 
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Figure  6.   Monthly volume transport through the Drake Passage with a small seasonal variation. 
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     Figure  7.     Inverted January  and (U, V) vector fields in the Weddell Sea.  Ψ
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           Figure  8. Inverted January  and (U, V) vector fields  in the Ross Sea.  Ψ
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     Figure 9.  Annual mean volume transport streamfunction at dateline and 150oW.  
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Figure  10. Inverted annual mean  and  (U, V) vector fields in the vicinity of Indonesian seas. Ψ
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Figure 11.  Inverted volume transport between Bali (8oS, 113.5oE) and northwest coast of Australia 
(20oS, 120oE): (a) annual mean -field, and (b) monthly variability. Ψ
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                               Figure  12. Monthly variation of the Kuroshio transport. 
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Figure 13. Monthly variation of volume transport through the Luzon Strait into the South China Sea. 
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Figure 14. Inverted annual mean  and (U, V) vector fields in the vicinity of the Australian 
Mediterranean sea and the South Australian Basin.  
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Figure 15.   Inverted monthly volume transport between the North American east coast and the 
center of the subtropical gyre representing the Gulf Stream transport. 
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Figure 16. Inverted annual mean  and (U, V) vector fields in the southwestern South Atlantic 
Ocean. 
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Figure  17.    Inverted annual mean Ψ  and  (U, V) vector fields in the vicinity of the south tip of 
Africa representing the Agulhas Retroflection. 
 

 51



                     

30 35 40 45 50
−30

−28

−26

−24

−22

−20

−18

−16

−14

−12

−10

Longitude (E)

La
tit

ud
e 

(N
)

−10

−2
0

−30
−40

−50

Annual Mean Volume Transport Streamfubction (Sv)

M
oz

am
bi

qu
e

M
ad

ag
as

ca
r

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
0

10

20

30

40

T
ra

ns
po

rt
 (

S
v)

Monthly

Mozambique Channel Transport

fig20
/s7/psi

m
d/paper/fig20   28−Sep−2000

 
 
                   Figure  18. Monthly mean transport through the Mozambique Channel. 
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        Figure A1.   Intersection of constant q and ρ surfaces and the vector P.   
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Figure A2. A multiply connected domain. The arrows indicate the directions of integration along 
the line integral paths defined in the text. 
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            Figure A3. Grid points of the minimum circuit along the island jΩ . 
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